Discussion of Megahit

Megahit was easy to install and it ran very quickly on large datasets.

We thought it seems like a fine approach for a low-complexity dataset. For my data, though, Megahit assembled 12% of the reads from one of my samples, and only 3% of the coassembly using the default settings. Perhaps a better strategy for a high-complexity dataset would be to normalize k-mers using, for example, diginorm or stacks before running megahit meta-large or even an assembler with more options.

We also discussed other assemblers, and decided that it might be best to pick your assembler based on the dataset in question.

Advertisements

2 thoughts on “Discussion of Megahit

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s